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Part 1: Some Electromagnetic Problems Relevant to the EEG
Paradigm \

Motivation and Background

It is well known that living tissues generate electrical activities. The electrical signals
produced by the heart, known as the electrocardiogram, the ones generated by muscles, called
electromyogram, and the one by the retina, named electroretinogram, have been studied by
physicians, neuroscientists!,2,3, and medical researchers. The brain also produces electrical
activity, and the study of such activity, i.e., electroencephalography (EEG), has been the subject
of research for neuroscientists, medical researchers and clinicians.4,5 Since these electrical
signals are due to the stimulus-induced potentials and currents in the brain tissues, understanding
and analyzing the electromagnetic characteristics of the potential and currents in inhomogeneous
dissipative media becomes of paramount importance. We have studied and analyzed some
selected electromagnetic problems that relate to the EEG paradigm.

(1)  Electromagnetic model for the interpretation of the potential distribution
over the scalp due to electrical activity inside the brain: Quasi-Static Approach

From the electromagnetic point of view we can think of the brain as an inhomogeneous, lossy
dielectric body, with complex geometry. The electrical activity of the brain is represented by the
currents flowing inside it that is caused by the neuronal activities. We are interested in the
electromagnetic modeling and analysis of the effects of those currents on the potential that can
be measured on the scalp by EEG sensors. In order to have a qualitative understanding it’s
possible to use simplified models either for the whole brain or of some specific part of it. A
simplified model of the brain, effective as far as the potential distribution over the scalp is
concerned, is well known multi-shelled (i.e., multilayered dielectric) sphere as depicted in the
Figure 1. In this way, the shape of the brain is approximated by a three-shell spherical volume
with the different complex permittivities in the various layers®.

1 A. L. Lyubarsky, and E. N. Pugh, Jr., “The recovery phase of the murine rod photoresponse reconstructed from
electroretinographic recordings” Journal of Neuroscience, vol. 16, No. 2, pp. 563-571, 1996.

2A L. Lyubarsky, B. Falsini, M. E. Pennesi, P. Valentini, and E. N. Pugh, Jr., “UV- and midwave-sensitive cone-driven retinal
responses of the mouse: a possible phenotype for co-expression of cone photopigments”, Journal of Neuroscience vol. 19, No. 1,
pp. 442-455, 1999.

3EN. Pugh, Jr., B. Falsini, and A. L. Lyubarsky, (1998) “The origin of the major rod- and cone-driven components of the
rodent electroretinogram, and the effect of age and light-rearing history on the magnitudes of these components”. In T.P.
Williams and A.B. Thistle (Eds.), Photostasis and Related Topics, pp. 93-128. New York: Plenum, 1998.

4 Paul. L. Nunez, Electric Fields of the Brain: The Neurophysics of EEG, Oxford University Press, 1981.

5 David Regan, Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine.
Elsevier, New York, 1989.




Figure 1 : Three-shell model of the brain

The structure depicted in Figure 1 may be analyzed either from the electrostatic or the
electrodynamic point of view. Since the frequencies involved are very low, we can first consider
the quasi-statis approach. .

In this model the three regions represent brain, skull and scalp and the whole structure is
surrounded by unbounded free space. Each region has a different conductivity, and the
surrounding medium has zero conductivity. We use this model to estimate the potential in each
of the three regions and outside, due to the current sources located at a point inside the brain.
We want to estimate the potential distribution in the structure, related to different configurations
of the sources. The electrostatic problem to solve is the one of a current source inside a
dissipative medium. From the continuity of charge, we have

op
ViI=——F : 1
Py (D
In the quasi-static case, (1)is equal to:
v-Joo )

Furthermore, we assume that the Ohm law is applicable in our medium, so we can express the
current density as the sum of an impressed current and a homic current:

J=1, +oE 3)

where o is the conductivity of the medium. For a “Point Source” we mean a point from which
an impressed current flows into our medium. We will call a “negative source” a current sink. If
we substitute (3) in the equation (2) we obtain:

~V-cE=V.J,, 4)

In the quasi-static approximation, the electric field may be expressed as the negative gradient of
a scalar potential:

e




So we have:
V-oV¥=V-J,, (6)
Equation (6) has the same form of the Poisson equation:
V- eVW¥=p @)

Equation (7) is identical to equation (6) if we replace ebyo and pbyV-J, , so as pointed out
by Ref [4], we have only to solve a standard electrostatic problem and then make the substitution.
For the case of a point source of current in a homogeneous medium with conductivity o we

have:

¥(r) = h%% | ®)

where I is the total current flowing from the source. Often a current dipole is defined as a
source and a sink of current very close to each other and with the same magnitude.

Radial and Non-Radial Current Dipoles

The first basic problem to solve is that of a radial current dipole. From the electromagnetic point
of view we must solve the Poisson’s Equation in an inhomogeneous medium. (We start with a
current dipole rather than a simple current source, because we assumed that the surrounding
medium has a zero conductivity and thus the current flow has to “close” to a sink in a region of
interest. In other words in our quasi-static analysis we have to put a source and a sink of the
same magnitude in order to “close the circuit”, and avoid a (time dependent) accumulation of
electric charge at the interface between conducting and non-conducting (outside) media.) .
Mathematically, we can still find a solution for a source and one for a sink, and then superimpose
them before we impose that the conductivity of the surrounding medium is equal to zero. Let’s
now define the geometry of the problem:




Figure 2. A radial current dz‘pole in the three-shell model

We will use the following names for the different regions:

e Region 1 iBrain): r <R, conductivity o,

e Region 2 (Skull): R, <r <R,, conductivity o,

e Region 3 (Scalp): R, <r <R,, conductivity o,

e Region 4 (Free Space): r > R, , conductivity o, =0

For the current dipole we assume the following parameters:

e Source Position r =r, + % , Source Magnitude [

e Sink Position r=r, —%, Sink Magnitude

We need to solve the Poisson’s Equation in Region 1 with the source and with the sink, and the
Laplace’s equation in the other regions. We can express the potential in Region] as the potential
due to the current Source in free space plus potential due to the “scattered” field at the interface:

\Pl = lIJs +LP31 (9)

where we put:




1 1

) a0
)

Because of the azimuthal symmetry of the problem the other term, which is a solution of the
homogeneous equation, is:

S —
4ro,

Wy, = Z(alnrn +b1nr_n_l)Pn (cos0) (11)
n=0

Where P,(cos@)is the Legendre Polynomial of degree n. In order the potential to be finite it

should be:
b,=0 (12)
In Region 2 we have: -
W, =D (@, +b,,r )P, (cosb) (13)
n=0
In Region 3 we have:
Ws =D (ay,r" +b,r"")P,(cos ) (19
n=0
and finally in Region 4:
W= Z (4" +b,,r ") P, (cos 6) (15)
n=0 :

But in order the potential to vanish at infinity it must be:
a,, =0 (16)

In order to impose the boundary conditions, we can expand the potential (10) due to the Current
Source using the orthogonality properties of the Legendre Polynomials, as follows:

111 i(mm[r’(r”%mn ,

47o,

(cos8) (17)

N

dj~_4”°" n=0 AN
r—|r+— +2
(d 2 (maxl:r,(rd 2)]




Now we impose the boundary conditions at each interface. At the first interface we have:

l{Js(Rl) + \Ps1(R1) = \Psz (Rx)

18
o, a‘PaS(r) ‘o, o¥,(r) —o, 0¥, () (18)
ro g, or or g
At the second interface:
\P.sz (Rz) = \Pss(Rz)
o, 0¥y, (r) —o, 0¥, (r) (19)
or g, or g,
And at the third one:
lPs3 (Rs) = LPS4 (Ra)
o, 0¥, (r) -0, 0¥, (r) (20)
or R, or R,

Based on what we said before we cannot set o, =0 yet. (One can show that if we set o, =0 at

this stage, the linear system has an indeterminate solution. This can be explained as follows:
Let’s assume thato, = 0, in this case the second equation in (20)becomes:

' o, oV g, (r)

2 =0 1)

R

So all coefficients other than a, are equal to zero, so:
Y, (r) =a, (22)
If we put (22) in (19) we obtain

Y, (R,)=a, (23)

And finally if we put (23) in (18) we obtain:




VY (R)+¥(R)=a,

s (| L ¥ _, (24)
or l R or |R
And from (24) we have
1
a-a == (25)

and we cannot get a unique solution.)

We can solve the same problem for the negative source and add the result to the one obtained for
the positive source. Only at this point we can set o, =0 to get the final result for the potential
distribution due to the current dipole. In Figure 3 we show the distribution of electric potential

due to a radial current dipole. In the figure we can see the equipotential lines. We used the
following numerical parameters:

Region 1 (Brain): radius = 7.65 cm 0'1=—L
350
Region 2 (Skull): thickness =0.8 = 26
gion 2 (Skull) , M G, 25000 (26)

Region 3 (Scalp): thickness =0.2 cm 0'3=$
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Figure 3. Potential distributions due a current dipole in three-shell model




Using the same technique we can analyze the case depicted in Figure 5 of non radial current
dipole.

Figure 4: A non-radial current dipole in three-shell model

In this case, we no longer have the azimuthal symmetry of the previous case, but we can still
separately calculate the contribution of the positive and the negative source and then we
superimpose the effects. . The result of this simulation is shown in Figure 5. It is worth
highlighting from the Figures 3 and 5 that a distribution of potential could be measured even at a
point away (i.e., non-contact) from the scalp surface.
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Figure 5: Potential distribution from a non-radial current dipole in three —shell model.




Modeling of a Probe: Perturbed Solution

How is the potential distribution perturbed by the presence of a conductive small probe inside the
structure or on the surface? The configuration that we have analyze is shown in Figure 6.

Figure 6

We assume that the radius of the spherical probe is 7,and its conductivity iso,. We use the

perturbation approach. First, we calculate the potential on the structure without the probe and
evaluate the electric field at the point where the probe is to be located. Since the probe is very
small we assume that the incident field is “uniform” over the region that is to be occupied by the
probe, and is equal to the unperturbed field in the center of the probe. Let’s denote the
unperturbed potential as'W,(r,8,9). The electric field will be:

EO(raes (D) = —V\IIO("’ 0: ¢) (27)
If the position of the probe is{r,,6,,¢,} , the electric field that excites the probe is:

E, =E(,6,,9,) (28)

Due to these assumptions, this field induces a uniform field inside the probe, equal to:




30,

=——1 E 29
" o,+20, ¢ %)
and its dipole moment is given by:
0,—0,
p= 4.7[0'1 o 270 rpEO (30)
p 1

The presence of the probe alters the distribution of potential by the amount:

3

o, -0 ¥

=—2 L F —" —cosy 3D
O"{,,+20'l |r—rol :

p

The angle ¥, shown in Figure 7, is the angle that the vector going from the center of the probe to
the observation point forms with the incident electric field on the probe.

Figure 7

The angle y can be written as:

_(r-r)-E,

= 32
cosy |r—r0|E0 32)

From this, (31) can be expressed as:




3
_0,-0 r, (@-r)E,

Co,+20, x| |r-n|E

(33)

p

This is a first-order approximate of the perturbation due to the presence of the probe. - This can

be further improved as follows: After the introduction of the perturbed field in (33) due to the

probe, the boundary conditions are no more satisfied, so we have to solve again the problem of
Poisson equation, with the induced dipole on the probe as a secondary source. We will then

superimpose the perturbed potential with the unperturbed potential. We assume that the induced

dipole on the probe is due to a positive and a negative source of current close to each other in
such a way that the induced current dipole is given as:

o,-0
p =4no ———

3
o, r’E, =470,] L (34)

which is;

0,~0; , .

———rE =1L (35)
o,+20; .

Our constraint is on the dipole moment, so we have a degree of freedom in choosing 1 ,and |L| .

We arbitrarily choose|L|to be equal to the diameter of the probe 2r, , and then we have:

[ =20 i|E|
’ 0,420, 2" "

E (36)
L=2rp|—lgz—|

In this way the two sources are given by:




,

(r) 15[ ( +p|E°lI|
E

I, (r)=-1,6|r-|t,~r, =%

L r {r [r r |E0|J:|

As in the unperturbed potential, we can now solve two separate problems with azimuthal
symmetry and then superimpose the solutions to have the total perturbation potential. In the
Figures 8 and 9, the green “dot” shows the position of the probe.

As we can see, there is almost no change in the potential provided the probe is small.

(37)

(2)  Electromagnetic model for the interpretation of the potential distribution
over the scalp due to electrical activity inside the brain: Electrodynamic
Approach

We can also analyze this structure using the electrodynamical approach. In this case we
substitute the current dipole used in the quasi-static analysis by an electromagnetic dipole. From
the electromagnetic view point, we have to solve the problem of the radiation by an electric
dipole in a multi-layered medium with different finite conductivities.

Tai and Collin in their 2000 paper in the JEEE Transactions on Antennas and Propagation (Vol.
48, No. 10, October 2000, pp. 1501-1506)6 discussed arr interesting problem dealing with
radiation of a Hertzian dipole in a conducting medium. They concluded that if a dipole is totally
immersed in a finitely conductive medium, for a given dipole moment the total radiating power
can theoretically be infinite. They mention that this is due to the dissipation of energy in the
immediate vicinity of such a dipole where the field can in principle be infinitely strong. Then
they analyzed the case of an insulated dipole in a conducting medium, in which the dipole is
insulated by a lossless dielectric sphere and then it is immersed in a finitely conducting medium
of infinite extent. Their results show that in this case the radiated power is finite. This problem
has direct relevance to the EEG problems in which induced dipoles in the brain tissues are
effectively dipoles in a conducting medium, resulting in the volume current in this medium.
Specifically, it is known that the pyramidal cells, the elongated primary processing neurons of
the visual cortex, necessarily act effectively as “current dipoles” because of the spatial
distribution of their membrane channels, so that their local “sources” and “sinks” lie at some
distance from one another along a line perpendicular to the cortex. Therefore, understanding the
behavior of such dipoles in finitely conducting medium is important in the EEG study. Here we
have explored the analysis and modeling of fields due to insulated and small dipoles in a
conducting sphere of layers with different conductivities: We refer to the geometry in Figure 8
where in general the insulated dipole is off-centered.

6 C. T. Tai and R. E. Collin, “Radiation of a Hertzian Dipole Immersed in a Dissipative Medium,” IEEE Transactzons on
Antennas and Propagation, Vol. 48, No. 10, October 2000, pp. 1501-1506




1 Regionl

Region2

Region3

Figure 8. Radiation of a dipole in three-shell model

To solve this problem we expand the electric and the magnetic fields in terms of Spherical
Vector Wave Harmonics? in each region and with respect to the most convenient reference
system between {r,8,p}and {r',6',¢'}. Spherical Vector Wave Harmonics are defined as follows:

M, ,(r.0,9)=Vu,,(r,0,p)xt
N, 7.6.0) =L VXM, ,,0,9) 69)

Uy (r:6,0) = j, (kr)F, (cos )e™

M (r,0,9) = Vul(r,0,p)x

n,m

»m m

N (r,0,0) = %V xM, (7,6,9) | (39)
U (r,0,0) = K (kr)P" (cos §)e™ '

,m

In region 1 we expand the fields with respect to {r,6, o}

E,(r,0,0)=) > B(n,m)N, ,(r,0,0)+Q,(n,mM, ,(,6,0) (40)
H,(r,6,9) =ii zn: A(n,mM, . (r.6,0)+Q,(n,m)N, . (r,6,0) (41)

7 A. Stratton, “Electromagnetic Theory”, McGraw-Hill, 1941




Due to the presence of the electric dipole in the region 1 we have to write the fields in the
following way:

E,(,6,0) = B (1L,ON{}(7,6,0)+ B (1LONZ (. 6,0) +
+h (1,—1)N17_1(r,9, @)+ B, 1)Nl,—l (r,0,0)+ (42)
+>. Y B(m,mN, . (r,0,0)+>. > Q(n,m)M, ,(r,6,9)

n=2 m=—n n=l m=-n
H(.0.0)= L [°0.0ME0.0.0)+ RO 0.OME(0.0)]
1
+ﬂi[P, (L-DM, , (,6,0)+ B(LDM,_,(,6,0) ]+ | @3)
1

+L3 S RO M, ,(,0,0+ 3 3. 0 m)N, . (,0,0)

1 n=2m=-n n=1 m=-n

In region 2 we expand the fields with respect to {r, 8, ¢} :

E,(r,6,0)=. > B (n,m)N®, (,0,0) +0 (n, )M, (,6,0) +
. ) n=1 m=-n (44)
+>. > BP(n,m)N® (r,0,0) +0 (n,m)M2), (7,6, 9)
n=1 m=-n
H,(r.6,9) =LZ > B (n,mMY, (r,6,0) +0° (n,m)N, (r,6,0) +
2 n=l m=-n :
@ (45)
+L3 3 BO (1, mME, (7,6,0) +0P (0, mNE, (r,6,0)

772 n=1 m=-n

In region 2 we also expand the fields with respect to {',8', ¢} :

E,(r,60,0)=). > A (n,m)NO, (+,6,¢")+B" (n,mM®, (+,6',¢") +
. ) n=1 m=—n (46)
+3 2 AP (n,m)N2 (,6',¢") +B (n,m)MP, (+,6,¢")

n=l m=—n

H,(",0,0) =L 40 (n,mM®, (+,6,¢") +BO (n, )N, (.6, ') +

,m

L 772 n=1 m=-n (47)
+L3S AP (n,mM®, (+,6',0) +BP (n,m)NP. (+, 6, )

2 n=1 m=—n




In region 3 and in region 4 we expand the fields with respect to {r',8’,¢'} :

E,(r,8,9)=2 >, A (n,mN}, (,6',0)+B" (n, m)M“’ (', 0,9+

n=1 m=-n
o (48)
+>. > AP (n,m)N? (+,0',¢")+BP (n,mMP, (', 6',¢)
n=1 m=-n
H,(r,0',¢") =— ] Z Z A (n,m)MS, (r',6',¢") +B" (n,m)N(), (', 6, ¢") +
3 n=l m=-n
(49)

Z Z A? (n,m)M®, (r,6',¢") +BP (n,m)N? (+',6',¢')

773 n=1 m=-n

In region 4 we impose also the radiation condition:

E,(.0,0) = Z Z 42 (n, m)N(z) (,6',0") +B2 (n,mM (r',6',0")  (50)

n=l m=—n

H,(,0,0) =L Z Z AP (n,mMP, (+,6',0') +BP (n, )N, (7, ,¢) (51

4 n=1 m=-n

By imposing the boundary conditions, we can find the unknown coefficients. Obviously, we can
easily impose the boundary conditions for fields expressed in the same reference system, so we
can impose the boundary conditions at the interface between regions 1 and 2 using the reference
system {r,0,¢}. At the interface between regions 2 and 3, we use the reference system {r',68',¢'}

Then we have to impose the Source Condition:

Pf”(l,o>+11<2’(1,0>=4i (52)
v/

Finally we have to relate the field in region 2 expressed in both reference systems by using the
addition theorem for spherical vector wave functions.
Let’s consider the electric field in the region 2 written in both reference systems:

E,(r.0,9)= Z Z B (n,m)N;). (r,6,0) +Q‘”(n,m)M“’ (r,6,0)+

n=1 m=-n

+Z Z B2 (n,m)N? (r,0,0) +0{? (n,mM®) (r,6,0)

o (53)
E,(r,6,¢)= Z z AP (n,m)NO (+,6',¢")+B (n,mM?, (r',6',0') +

n=1 m=—n

+Z Z AP (n,m)ND (+,6',¢")+B (n,m)M®, (+,6',¢")

n=l m=-n




The Addition Theorem for the spherical vector wave functions8 states:

N@@6,0)=> > X ('“)(n, mv, N (r,0',9")+ YD (n,m,v, )M (', 6,9

v=l g=—v (54)
Mf,"’,fl (r,0,p)= z Z X (n,m, V,IU)MSZ)‘ (r,6,0)+ YO (n,m,v, ,u)foj #',6',9")

v=l uy=-v

where:

(X (n,m,v, 1) = (=1 a(m,n|~ p,v| p, p)e(n,v, pYAS (kry ) Py (cos 8, )e ™%
P

Y (n,m,v, u) = (—1‘)/‘+l Y a(m,n|- p,v|p, p-Dd(n,v, p)hi® (kr,) Pl (cos 6, ) " %
‘ P

c(m,v, p)=i"*"" [2v(v+1)(2v+1)+(v+1)(n—v+p+1)(n+v;p)_v(v_n+p+l)(n+V+p+2)]
v(v+1)

d(n,v, p) =" (2V+1)J(n+v+p+1)(V—n+p)(n—v+p)(n+v—p+1)

\ v(v+1)

(55)

Using that theorem we can write the field in region 2 as:
E,(r,6,90) > E,(+',6,¢") =

v,u
n=1 m=—n v=l pu=-v

=3y Pz(l)(n,m)(z > XOm,my, pNO (+,60',0)+ X (n,m,v, M, (7,6, (p’)j+

o0

+2. 0P (m,m)| DD XOm,my, MO (.0, 0)+ X (n,m,v, ND (.0, ¢) |+

v,u
n=1 m=-n v=l p=-v

Vv,u v.u
n=1 m=-n v=1l p=-v

o0 n ( 0 v
+Z Z P®(n,m) Z Z XD (n,m,v, NP (r,6',0)+ XP(n,m,v, M (.6, ¢')J+

V.M v.u
n=1 m=-n yv=l y=-v

+2. 0P (mm)| DY XD (n,mv, MO, (#,6,0") + X O (n,m,v, ))NE,(,6',¢')

(56)
At this point we change the order of the summations in (56) and we obtain:

8 O.R. Cruzan, “Translational Addition Theorems for Spherical Vector Wave Functions”, Q. Appl. Math., vol. 20, pp 33-40,
1962




E,(r.0.¢) =

=22 [Z > PO (n,m) XV (n,m,v, 1) + Qé"<n,m)Y“>(n,m,v,m}NE‘L (,0',9) +

v=1 py=—v(_n=l n=—n

v=1 uy=-v | n=1 m=—-n

+Z Z [Z Z PO (n,m)Y® (n,m,v, u) + Q" (n,m) X (n,m,v,,u)} M (Vl);, .60 +

> [Z > B2 (n,m)X® (n,m,v, )+ O (n,m)Y ® (n,m,v, ,u)] NO (#,0,¢)+

v=1 y=—v | n=l n=—n

2 [Z > B nm)Y® (n,mv, 1)+ 07 (n,m) XV (n,m,v,ﬂ)]MS?L(r',ew')

v=l uy=-v L n=1 m=-n

(57)

At this point we can compare (53) with (57) and we obtain the following relations between
coefficients:

(Aé‘) W)= > PO (n,m) X (n,m,v, p) + O (n,m)¥Y® (n,m,v, p1)

n=l n=—n

BP(v, )=, > B (nm)YO(n,m,v, 1)+ O (n,m) X (n,m, v, 1)

4 n=1 m=-n . (58)
AW, =2, B2 (,m)XP(n,m,v, 1)+ OF (n,m)Y D (n,m,v, p)
n=1 n=—n
LBé” V1) =2, 2 B2 (,mY® (n,m,v, 1)+ OF (n,m)X @ (n,m,v, 1)
n=1 m=—n

Finally using the conditions (58) we can find all of the unknown coefficients.

It is important to mention that when we impose the boundary conditions at the interfaces 1-2 and
2-3, because of the orthogonality properties of the spherical vector wave functions, we see that
all of the equations are decoupled, so we can find immediately a solution. The only equations we
have to solve are the conditions (58). In other words the real number of unknowns depends only
on the regions with non concentric boundaries, in our case the region 2.

The geometry becomes much simplified if the insulated dipole is located at center of the sphere?,
as shown in Figure 9

9CT. Tai, R.E. Collin, “Radiation of a Hertzian Dipole Immersed in a Dissipative Medium”, IEEE Trans. Antennas and
Propagation, vol. 48, n. 10, October 2000




Figure 9

In this case we have 3 concentric dielectric spheres with an electric dipole located in the center.

In order to find electric and magnetic fields everywhere we write the Helmholtz’s equation for
the magnetic vector potential in the four regions:

VA, 0+ A,(0)=-pJ50)  r<n (59)
VA, (r)+ k24, (r)=0 r<r<r, (60)
V24, (r)+ k24, (r) =0 r<r<r (61)
VA, (r)+ k24, (r)=0 r>r, O (62)

Due to symmetry, the solutions are written as:

~Jjk;r

e e,
A =|a +b,
; (“‘ ;T Jz (63)

i=12,3,4

In order to find 8 unknown coefficients, we have to impose boundary conditions at each interface
(6 equations), the radiation condition (1 equation) and the source condition (1 equation).

The radiation condition states that in the unbounded region, for time-dependence e’”, we get :

b, =0 (64)




For the source condition we consider the inhomogeneous Helmholtz’s equation (59) and we
integrate both sides in the volume V of a sphere of radiusa — 0:

[V-V4, @)+ [4, (e =-p]  r<y, (65)
vV vV

The second integral in the left side is equal to zero foraz — 0. We apply the divergence theorem:

2z
I I——aAlz(r’e’ P 42 sin 0dOdp =-puJ r<n (66)
00

or

r=a

Then we put (63) into (66) and we obtain the source condition:

J .
a,+b, ={4‘—” (67)

For the other boundary conditions we have to calculate electric and magnetic fields in each

region: :
1
H, =—VxA, (68)
7
E=YUA) o, ©9)
JOHE; »

And then we can impose the boundary conditions:

FxE,| =FxE,|
i d

70
f‘le,_l:f'tzr1 (70)
f'szL2 =f'><E3|r1 an
f'XHzlrz =f"<Hs|r2
f‘><E3|r3 =f'><E4|r3 (’72)

fxH,| =fxH,|
! 6]

We have to solve the system of equations given by (64), (67), (71) and (72). Once we have the
solution of the system we can plot the behavior of the fields. In figure 10, we show the behavior
of the absolute value of the transverse electric field.
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Figure 13. Magnitude of the Transverse electric field of the insulated dipole in finite-radius
sphere

In Figure 11, we show Poynting Vector (multiplied byr?), i.e., the power radiated per unit solid
angle, in order to see the effect of dissipation due to the loss:

botk | poynting Vector S, 000 4, Dipdle Strenght 01

v

0.5 1 1.5 2
Figure 14

In the outer region, without loss, the function is constant, as expected.




3) Potential of a Small Dipole in a Dissipative Medium with Certain Inhomogeneous
Conductivity -

In our previous study!9, we found that the sagittal fissure in the brain can act as a “major shunt”
for electrical current flow, providing evidence that the commonly used 3-sheel model of
conductivity may not be adequate in certain conditions. This is due to the fact that the
conductivity in the region of sagittal fissure, which is filled with the cerebrospinal fluid (CSF), is
different from that of the other inner parts of the brain. In that work, it was shown that a pair of
visually-evoked induced “dipole currents”, i.e., excited neurons in the visual cortex, oriented
~180 degrees opposite and located across the sagittal fissure produce the scalp potential
distributions nearly identical in amplitude and phase, whereas the 3-shell model suggested a
mirror-image symmetry across the midline for this potential distribution. Furthermore, the scalp
potential around the region of projection of the sagittal fissure onto the scalp had maximum
amplitude, which is again different from what the 3-shell model predicted. Here we have
explored this issue theoretically by analyzing certain electromagnetic model of a current dipole
in a medium with certain inhomogeneous conductivity. We have studied theoretically the
potential distribution of a current dipole in a conducting medium with uniform conductivity
everywhere, except in a wedge (or a cone) region having a different conductivity (Fig. 12),
essentially modeling sagittal fissure shunt. The current dipole can be located at some arbitrary

point. We utilized a quasi-static model for this problem and have expressed the electric
potentials everywhere.

Figure 15. A wedge with a different conductivity that its surrounding region

10 N. Pugh, Jr,, J. B. Demb, B. Alterman, C. Daniele, L. Daniele, H. Baseler, N. Engheta, and B. Wandell, "Visual potentials
evoked by small oscillating sources located by fMRI: the sagittal fissure is a major shunt," a poster presented in the 29th Annual
Meeting of the Society for Neuroscience, in Miami Beach, Florida, October 23-28, 1999.




